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[Image taken from “Adaptive Radar Resource Management” book by P. Moo and Z. Ding, 2015] 

Multifunction Radar 



3 

Radar Resource Management 

 Radar resource management (RRM) considers 

         - Parameter selection (e.g. pulse duration, PRF, number of 

           pulses, task priorities, …) 

         - Scheduling the tasks on the radar timeline(s). 

 

 As a common theme in most of the previous works, RRM can be split 
into three stages 

       1) Task parameter selection 

       2) Task down-selection 

            - In case of an overloaded system, some tasks may need to be 

              dropped.  

       3) Task scheduling  

            - The time that each task starts to execute and also the 

               channel on which the task is performed are determined. 
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Task Parameters 

 For each task, there is a starting time (𝑠𝑛) after which the task 
can be scheduled, and there is also a deadline (𝑑𝑛) after which 
the task must be dropped. 

 

 Each task has a dropping cost (𝐷𝑛). 
 

 Each task has a length (ℓ𝑛), (dwell time). 
 

 For each task (if executed), there is a tardiness cost which is 
assumed to be linearly proportional (𝑤𝑛) to the difference 
between the execution time (𝑒𝑛) and the starting time (𝑠𝑛) 
(𝑠𝑛 ≤ 𝑒𝑛 ≤ 𝑑𝑛). 
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 If task 𝑛 is dropped 𝑥𝑛 = 0, else 𝑥𝑛 = 1. 

 𝑐𝑛 = 𝑥𝑛𝑤𝑛 𝑒𝑛 − 𝑠𝑛 + 1 − 𝑥𝑛 𝐷𝑛 
– Model is for illustration; any reasonable cost function can be used 

 𝑠𝑛 ≤ 𝑒𝑛 ≤ 𝑑𝑛 if  𝑥𝑛 = 1 

 

 

 

Task Cost Function 

(𝑠𝑛) (𝑑𝑛) 

(𝑤𝑛) 

(𝐷𝑛) 
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Problem Formulation 

 There are 𝑁 tasks with given operational parameters. 

 There are K channels. 

 Objective is to minimize the total cost 

 
 

      min  𝑥𝑛𝑤𝑛 𝑒𝑛 − 𝑠𝑛 + 1 − 𝑥𝑛 𝐷𝑛

𝑁

𝑛=1

  

 

      such that                𝑥𝑛  ∈ {0, 1} 

                                       𝑠𝑛 ≤ 𝑒𝑛 ≤ 𝑑𝑛 if  𝑥𝑛 = 1  

                                      No tasks overlap in time 

 

 This is an NP-hard problem. 
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Optimal Solution: Branch and Bound (B&B) 

 This procedure implicitly enumerates all possible solutions on a 
search tree. 
– Each node of the tree is a partial schedule 

 

 Rules (e.g. bounds, dominance rules, …) are used to prune off 
nodes that are provably suboptimal (i.e., bounding). 
– Example of bound: track cost of “best- known-solution-so-far” 

– Example of dominance rule: check whether an unscheduled task can be 
fit in a time gap of the partial schedule 

 

 Once the entire tree has been explored, the best solution found 
in the search is returned. 

 - This is the optimal solution 
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Branch and Bound: Search Tree 

{} 

{1,2,3} 

{1} 

{1,2} {1,3} 

{1,3,2} {2,1,3} 

{2} 

{2,1} {2,3} 

{2,3,1} {3,1,2} 

{3} 

{3,1} {3,2} 

{3,2,1} 

Root node: empty sequence 

Best found 1 Best found 2 Optimal solution 

Worse than  
best found  
so far 

Dominated 

Worse than  
best found  
so far 
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Simulation parameters (B&B v/s heuristics) 

 Setup 
 

  Number of channels (timelines):  4    

 Timeline window: 100 sec 

 Task starting time: 𝒰(0, 100) sec 

 Task interval (deadline – starting time): 𝒰(2, 12) sec 

 Task length: 𝒰(2, 11) sec 

 Dropping cost: 𝒰(100, 500)  

 Tardiness cost slope: 𝒰(1, 5) 

 Number of Monte Carlo trials: 1000 
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B&B v/s heuristics: Average Cost - Number of Tasks 
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Simulation Time is Heavy-Tailed 

 

 

 

 

 

 

 

 

 

 

 

 
 

 949 of 1000 realizations in first bin 
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Branch and Bound Method Enhanced with Neural Networks 

{} 

{1,2,3} 

{1} 

{1,2} {1,3} 

{1,3,2} {2,1,3} 

{2} 

{2,1} {2,3} 

{2,3,1} {3,1,2} 

{3} 

{3,1} {3,2} 

{3,2,1} 

Value Network: estimated least  
final cost achievable from this  
state is worse than best  
cost found so far. 

Best found 1 Best found 2 Optimal solution 

Worse than  
best found  
so far 

Dominated 

Worse than  
best found  
so far 
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Neural Network Architecture: Value Network 

 The optimal value function 𝑣∗(𝑠) determines the least overall 
cost (of a complete schedule) that can be obtained starting from 
state 𝑠 (a partial schedule). 

 
– The depth of the search may be reduced by truncating the 

tree at state 𝑠 and replacing the subtree below 𝑠 by an 
approximate value function 𝑣 𝑠 ≈ 𝑣∗(𝑠). 

 
– A value network is used to produce the approximate value 

function. 
 

– The  weights of the network are obtained by regression on 
the state-outcome pairs (s, 𝑣∗(𝑠)) obtained from training 
data. 
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Neural Network Architecture: State Definition 

 A state, 𝑠, is a representation of a partial schedule (node). It 
includes the initial parameters of the tasks as well as their state 
(scheduled, dropped, or not scheduled) in the corresponding 
partial schedule.   

 

 

 

Input feature Description 

1, 2, 3 status (1 0 0: scheduled, 0 1 0: dropped, 0 0 1: unscheduled) 

4 start time 

5 end time 

6 task length 

7 execution time 

8 tardiness coefficient 

9 dropping cost coefficient 

10 tardiness cost or drop cost (if scheduled or dropped) 

11, 12, 13, 14 assigned timeline (one-hot encoded) 
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Value Network Implementation 

 The final output of the network is a scalar number representing 
the estimated least final cost of the partial schedule input. 

 

 

 

 

 

 

 

 

 In order to increase the robustness of the algorithm to 
estimation errors, the output of the network is divided by a 
fixed scalar  β ≥ 1. 
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Simulation Results (same setup as before) 

  EST EST+S

W 

ED ED+S

W 

B&B 𝛽 = 1  𝛽 = 

1.5 

𝛽 = 2 

Average 

Cost 

  

93.2 

  

68.3 

  

115.8 

  

101.5 

  

38.6 

  

45.7 

  

44.5 

  

42.9 

Average # 

of visited 

nodes 

  

- 

  

- 

  

- 

  

- 

  

13134 

  

448 

  

1466 

  

2460 
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Simulation Results (same setup as before) 

 (Cost, Number of visited nodes) for some random instances 

  B&B 𝛽 = 1 𝛽 = 1.5 𝛽 = 2 EST+S

W 

Sample 

1 

(54.9, 

1670) 

(63.1, 36) (63.1, 52) (63.1, 

211) 

63.1 

Sample 

2 

(73.6, 

554298) 

(96.3, 

110) 

(96.2, 

1512) 

(78.9, 

54027) 

100.0 

Sample 

3 

(221.9, 

54514) 

(221.9, 

23610) 

(221.9, 

46626) 

(221.9, 

52705) 

328.4 

Sample 

4 

(47.5, 

6998) 

(49.4, 

173) 

(49.4, 

196) 

(47.5, 

206) 

49.7 

Sample 

5 

(30.1, 

2017) 

(39.1, 

105) 

(39.1, 

131) 

(39.1, 

153) 

39.1 
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Concluding Remarks 

 Heuristic methods have low complexity, but unsatisfactory 
performance. 

 B&B algorithm finds the optimal solution, but has high 
complexity. 

 Neural networks can be used to evaluate the importance of 
each node in the search tree, and eliminate nodes which are 
unlikely to result in the optimal solution. 

 Solutions found offline by the B&B method can be used as 
labeled data for supervised training of the neural networks. 
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Questions 
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Value Network Implementation Details 

 Convolutional filters have a width of 7 (looking at the features 
of 7 consecutive tasks at each stride). 

 64 filters are used at each layer (the output of each 
convolutional layer has 64 features). 

 The first fully connected layer has 512 hidden units, and the 
second fully connected layer has 128 hidden units. The last layer 
has one scalar output.  

 The network is trained using 90000 samples obtained from the 
branch-and-bound method. 

 The weights are obtained by minimizing the L2-loss using the 
Adaptive Moment Estimation (Adam) optimization method. 

 We use 100000 steps of the Random Reshuffling (RR) method 
with mini-batches of size 100. 

 

 

 



Set up a new node 

Delete tasks with expired 
deadlines 

Remove completely 
investigated node  

21 

Optimal Solution: Branch and Bound (B&B) 

Dominance rule 

Dominance rules 

Add new node to tree for 
further investigation 
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B&B v/s heuristics: Average Cost - Number of Channels 
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B&B v/s heuristics: % Tasks Scheduled - Number of Tasks 
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B&B v/s heuristics: % Tasks Scheduled - Number of Channels  
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Value Network Implementation 

 The value network is implemented using three convolutional 
layers and three fully connected layers. 

 The input to the network is a state (representing a partial 
schedule) formatted as a matrix with each column 
corresponding to a task and each row representing a feature. 

 The coefficients of the filters are obtained using supervised 
training. 

 

 

 

Convolutional Layer 


