
 Cognitive Radio Resource Management
based on Machine Learning

Raviraj S. Adve

 Department of Electrical and Computer Engineering

e-mail: rsadve@comm.utoronto.ca

NATO SET-241, 2017

2

[Image taken from “Adaptive Radar Resource Management” book by P. Moo and Z. Ding, 2015]

Multifunction Radar

3

Radar Resource Management

 Radar resource management (RRM) considers

 - Parameter selection (e.g. pulse duration, PRF, number of

 pulses, task priorities, …)

 - Scheduling the tasks on the radar timeline(s).

 As a common theme in most of the previous works, RRM can be split
into three stages

 1) Task parameter selection

 2) Task down-selection

 - In case of an overloaded system, some tasks may need to be

 dropped.

 3) Task scheduling

 - The time that each task starts to execute and also the

 channel on which the task is performed are determined.

4

Task Parameters

 For each task, there is a starting time (𝑠𝑛) after which the task
can be scheduled, and there is also a deadline (𝑑𝑛) after which
the task must be dropped.

 Each task has a dropping cost (𝐷𝑛).

 Each task has a length (ℓ𝑛), (dwell time).

 For each task (if executed), there is a tardiness cost which is
assumed to be linearly proportional (𝑤𝑛) to the difference
between the execution time (𝑒𝑛) and the starting time (𝑠𝑛)
(𝑠𝑛 ≤ 𝑒𝑛 ≤ 𝑑𝑛).

5

 If task 𝑛 is dropped 𝑥𝑛 = 0, else 𝑥𝑛 = 1.

 𝑐𝑛 = 𝑥𝑛𝑤𝑛 𝑒𝑛 − 𝑠𝑛 + 1 − 𝑥𝑛 𝐷𝑛
– Model is for illustration; any reasonable cost function can be used

 𝑠𝑛 ≤ 𝑒𝑛 ≤ 𝑑𝑛 if 𝑥𝑛 = 1

Task Cost Function

(𝑠𝑛) (𝑑𝑛)

(𝑤𝑛)

(𝐷𝑛)

6

Problem Formulation

 There are 𝑁 tasks with given operational parameters.

 There are K channels.

 Objective is to minimize the total cost

 min 𝑥𝑛𝑤𝑛 𝑒𝑛 − 𝑠𝑛 + 1 − 𝑥𝑛 𝐷𝑛

𝑁

𝑛=1

 such that 𝑥𝑛 ∈ {0, 1}

 𝑠𝑛 ≤ 𝑒𝑛 ≤ 𝑑𝑛 if 𝑥𝑛 = 1

 No tasks overlap in time

 This is an NP-hard problem.

7

Optimal Solution: Branch and Bound (B&B)

 This procedure implicitly enumerates all possible solutions on a
search tree.
– Each node of the tree is a partial schedule

 Rules (e.g. bounds, dominance rules, …) are used to prune off
nodes that are provably suboptimal (i.e., bounding).
– Example of bound: track cost of “best- known-solution-so-far”

– Example of dominance rule: check whether an unscheduled task can be
fit in a time gap of the partial schedule

 Once the entire tree has been explored, the best solution found
in the search is returned.

 - This is the optimal solution

8

Branch and Bound: Search Tree

{}

{1,2,3}

{1}

{1,2} {1,3}

{1,3,2} {2,1,3}

{2}

{2,1} {2,3}

{2,3,1} {3,1,2}

{3}

{3,1} {3,2}

{3,2,1}

Root node: empty sequence

Best found 1 Best found 2 Optimal solution

Worse than
best found
so far

Dominated

Worse than
best found
so far

9

Simulation parameters (B&B v/s heuristics)

 Setup

 Number of channels (timelines): 4

 Timeline window: 100 sec

 Task starting time: 𝒰(0, 100) sec

 Task interval (deadline – starting time): 𝒰(2, 12) sec

 Task length: 𝒰(2, 11) sec

 Dropping cost: 𝒰(100, 500)

 Tardiness cost slope: 𝒰(1, 5)

 Number of Monte Carlo trials: 1000

10

B&B v/s heuristics: Average Cost - Number of Tasks

11

Simulation Time is Heavy-Tailed

 949 of 1000 realizations in first bin

12

Branch and Bound Method Enhanced with Neural Networks

{}

{1,2,3}

{1}

{1,2} {1,3}

{1,3,2} {2,1,3}

{2}

{2,1} {2,3}

{2,3,1} {3,1,2}

{3}

{3,1} {3,2}

{3,2,1}

Value Network: estimated least
final cost achievable from this
state is worse than best
cost found so far.

Best found 1 Best found 2 Optimal solution

Worse than
best found
so far

Dominated

Worse than
best found
so far

13

Neural Network Architecture: Value Network

 The optimal value function 𝑣∗(𝑠) determines the least overall
cost (of a complete schedule) that can be obtained starting from
state 𝑠 (a partial schedule).

– The depth of the search may be reduced by truncating the

tree at state 𝑠 and replacing the subtree below 𝑠 by an
approximate value function 𝑣 𝑠 ≈ 𝑣∗(𝑠).

– A value network is used to produce the approximate value

function.

– The weights of the network are obtained by regression on
the state-outcome pairs (s, 𝑣∗(𝑠)) obtained from training
data.

14

Neural Network Architecture: State Definition

 A state, 𝑠, is a representation of a partial schedule (node). It
includes the initial parameters of the tasks as well as their state
(scheduled, dropped, or not scheduled) in the corresponding
partial schedule.

Input feature Description

1, 2, 3 status (1 0 0: scheduled, 0 1 0: dropped, 0 0 1: unscheduled)

4 start time

5 end time

6 task length

7 execution time

8 tardiness coefficient

9 dropping cost coefficient

10 tardiness cost or drop cost (if scheduled or dropped)

11, 12, 13, 14 assigned timeline (one-hot encoded)

15

Value Network Implementation

 The final output of the network is a scalar number representing
the estimated least final cost of the partial schedule input.

 In order to increase the robustness of the algorithm to
estimation errors, the output of the network is divided by a
fixed scalar β ≥ 1.

16

Simulation Results (same setup as before)

 EST EST+S

W

ED ED+S

W

B&B 𝛽 = 1 𝛽 =

1.5

𝛽 = 2

Average

Cost

93.2

68.3

115.8

101.5

38.6

45.7

44.5

42.9

Average #

of visited

nodes

-

-

-

-

13134

448

1466

2460

17

Simulation Results (same setup as before)

 (Cost, Number of visited nodes) for some random instances

 B&B 𝛽 = 1 𝛽 = 1.5 𝛽 = 2 EST+S

W

Sample

1

(54.9,

1670)

(63.1, 36) (63.1, 52) (63.1,

211)

63.1

Sample

2

(73.6,

554298)

(96.3,

110)

(96.2,

1512)

(78.9,

54027)

100.0

Sample

3

(221.9,

54514)

(221.9,

23610)

(221.9,

46626)

(221.9,

52705)

328.4

Sample

4

(47.5,

6998)

(49.4,

173)

(49.4,

196)

(47.5,

206)

49.7

Sample

5

(30.1,

2017)

(39.1,

105)

(39.1,

131)

(39.1,

153)

39.1

18

Concluding Remarks

 Heuristic methods have low complexity, but unsatisfactory
performance.

 B&B algorithm finds the optimal solution, but has high
complexity.

 Neural networks can be used to evaluate the importance of
each node in the search tree, and eliminate nodes which are
unlikely to result in the optimal solution.

 Solutions found offline by the B&B method can be used as
labeled data for supervised training of the neural networks.

19

Questions

20

Value Network Implementation Details

 Convolutional filters have a width of 7 (looking at the features
of 7 consecutive tasks at each stride).

 64 filters are used at each layer (the output of each
convolutional layer has 64 features).

 The first fully connected layer has 512 hidden units, and the
second fully connected layer has 128 hidden units. The last layer
has one scalar output.

 The network is trained using 90000 samples obtained from the
branch-and-bound method.

 The weights are obtained by minimizing the L2-loss using the
Adaptive Moment Estimation (Adam) optimization method.

 We use 100000 steps of the Random Reshuffling (RR) method
with mini-batches of size 100.

Set up a new node

Delete tasks with expired
deadlines

Remove completely
investigated node

21

Optimal Solution: Branch and Bound (B&B)

Dominance rule

Dominance rules

Add new node to tree for
further investigation

22

B&B v/s heuristics: Average Cost - Number of Channels

23

B&B v/s heuristics: % Tasks Scheduled - Number of Tasks

24

B&B v/s heuristics: % Tasks Scheduled - Number of Channels

25

Value Network Implementation

 The value network is implemented using three convolutional
layers and three fully connected layers.

 The input to the network is a state (representing a partial
schedule) formatted as a matrix with each column
corresponding to a task and each row representing a feature.

 The coefficients of the filters are obtained using supervised
training.

Convolutional Layer

